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Abstract 

To discuss the X-ray dynamical diffraction when the 
imaginary part of the X-ray polarizability is larger than 
the real part, the dispersion surface is studied as a 
function of the ratio between the real and the imaginary 
parts of the polarizability. The dispersion surface in the 
Laue case when the real part is zero has a similar form to 
that in the Bragg case when the imaginary part is zero. 
The relations between the dispersion surface and the 
diffracted intensity are studied in some special cases. The 
abnormal absorption and the abnormal transmission 
effect are related to the features of the dispersion surface. 

I. Introduction 

By using X-rays from synchrotron radiation, it is possible 
to study dynamical diffraction very near the absorption 
edge of an atom in a crystal. The real and imaginary parts 
of the X-ray polarizability can be changed by tuning the 
X-ray energy. In an extreme case, the diffraction can be 
observed when the real part of the X-ray polarizability is 
zero. Fukamachi et al. (1993) observed the dynamical and 
diffraction for high-order reflections from Ge when the 
real part was zero. 

Up to now, most dynamical diffractions have been 
studied when the imaginary part of the X-ray polariz- 
ability is much smaller than the real part. The theories 
(Zachariasen, 1945; James, 1963; Miyake, 1969; Pinsker, 
1978) for treating the diffraction in such a case is not 
applicable when the real part is zero. Recently, 
Fukamachi & Kawamura (1993) (hereinafter referred to 
as FK) revised the dynamical theory to treat the 
diffraction regardless of the values of the real and 
imaginary parts. They discussed the diffracted and the 
transmitted intensities when the real part is zero. In the 
dynamical theory, it is useful to study the dispersion 
surfaces in order to understand the geometry in the wave- 
number space. In this paper, the dispersion surface and 
the corresponding rocking curves are studied for several 
ratios between the real and imaginary parts of the X-ray and 
polarizability. 
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2. Equation of dispersion surface 

We define the Fourier transforms of the real and 
imaginary parts of the X-ray polarizability as X~, and 
X~, respectively. The Fourier transform of the polariz- 
ability is given by 

Xh = Xrh + iX~h = IX~,I exp(icr~) + i[x~l exp(io~). (1) 

Here h is a reciprocal-lattice vector, u~, and o~, are the 
phases of X~ and X~, respectively. According to FK, we 
define Xh as 

2h -- (Ixrhl 2 + IX~,12) 1/2, (2) 

then we have the relation 

XhX-h = 22( 1 --b2 -4 - i2pcos&) .  (3) 

Here, the parameters b, p and & are given by 

b = (2q) l/z (4) 

p = I x ~ h l I x ~ I / 2 ~  - -  ( I x r h l / I x ~ l ) q  (5) 

i r 
& = tr h - a h (6) 

by using the parameter q, 

q = 1/(1 + Ix~lZ/Ixihl2). (7) 

The parameter q is zero for Ix~l = 0, 0.5 for Ix~,l = Ix~l 
and 1 for Ix ; , I -  0. The values of b, p and XhX-h for 
q -- 0, 0.5 and 1 are listed in Table 1. 

By defining the real and imaginary parts of the wave 
vector of the incident beam in a crystal, r 0, as 

K 0 ~-- KOr + il(.Oi, ( 8 )  

we have the relations 

IKor I = KOr - -  K(1 + X~o/2) (9) 

~ "" K X g / 2 .  = = KOrXO/2 - -  Xo~ IKo~IXo/2 (lO) 
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The wave number K is the magnitude of the incident 
wave vector in vacuum. The linear absorption coefficient 
is given by 

# = -2rrK X~. (11) 

For a polarization, the equation of the dispersion surface 
is expressed by 

= X0rXh(1 - + 2ipcos3) /4 ,  (~0 - -  iKo i ) (~h  - -  ixoi) 2 -2 b 2 

(12) 

where the parameters ~0 and ~h are defined as 

~0 - iK0, = k0 - K0 (13) 

and 

~h - -  iXoi = kh -- K0- (14) 

Here, we use the two-wave approximation. Owing to 
diffraction, the wave vector of the incident beam 
becomes k 0 so as to satisfy (12) and k h is the 
corresponding wave vector for the diffracted beam. If 
we take the X axis parallel to the surface and the Y axis 
outward normal to it, we have relations 

~0 = iX sin 01 + jY cos 01 
(15) 

~h = iX sin 02 + jY cos 02. 

The unit vector in the X direction is i and that in the Y 
direction is j. The geometrical illustration is shown in 
Fig. 1 for when the imaginary part of the polarizability is 
zero (q = 0). The angles 01 and 02 are also shown in 
Fig. 1. 
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Fig. 1. The schematic diagram of the diffraction condition and the 
dispersion surface near a Bragg condition. 0: the incident point; H: 
the diffraction point; h: the reciprocal-lattice vector; 0: Bragg angle; 
A~ and A2: the dispersion points on branches 1 and 2; v: surface 
normal. 

Table 1. Values o f  parameters for  three conditions 
between xrh and X'h 

Condition q b p Xh X-h 

x~ = 0 0 0 0 Ix~l z 

Ix~l = Ix~l 1/2 I I /2  i2  2 cos a 
X~ = 0 1 21/2 0 - Ix~, I  2 

It is convenient to define a parameter called 'resonance 
error' W as 

W = - X  sin 20/([ cos01 cosO2[U2KOr~h). (16) 

AS shown in Fig. 1, 0 is the Bragg angle. By inserting 
(15) into (12),  we obtain 

Y = (+)XOrf(h/(21 COS 01 COS 02 [)U2{(sin 2f l / s in  20)W 

+ ig cos 0 sin fl/I cos 01 cos 0211/2 -4- [(W + ig' )2 

(4-)(1 - b  2 + 2ipcosS)]l/z}. (17) 

The parameters g and g' are defined as 

g = goq ~/2 (18) 

and 

g' = g sin 0cos/3/(1 COS01COSOz[I/2KOrXh), (19) 

where go = X~/Ix~,[ and the angle 13 is given in Fig. 1. 
For the double signs (4-) in (17), the positive sign is 
taken for the Laue case (cos 02 > 0) and the negative sign 
for the Bragg case (cos0 z < 0). In the following, we 
consider only the symmetric Laue and the symmetric 
Bragg cases for a polarization. For n" polarization, we 
obtain similar formulae by multiplying the polarization 
factor [cos 201 with X~, and X~,. 

3. S y m m e t r i c  L a u e  case  

In the symmetric Laue case, fl = rr/2 and 0 = -01 = 0 2. 

The difference between the two solutions y(o and y(2) of 
(17), which is the distance between two dispersion 
points, is 

y(2) _ y(l) = (s/zr)LUZ. (20) 

Here, s and L are 

s = ZrXor~h / cos0 (21) 

and 

L = W z + 1 - b 2 + 2ip cos 8. (22) 

3.1. In the case when q = 0 

When q = 0 (no absorption case), the equation of the 
dispersion surface becomes the well known form 

(Y COS0) 2 --  (X sin0) 2 = ~rlg~12/4. (23) 
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The dispersion surface is a hyperbola, as shown in Fig. 
2(a). The rocking curve of the diffracted beam Ph/Po, 
calculated for sH = Jr and ~; = 0, is shown in Fig. 3(a) 
with Po and Ph being the incident and diffracted 
intensities, respectively, and H being the thickness of 
the crystal. To show the correspondence between the 
dispersion surface and the rocking curve, we take - W  as 
the abscissa in Fig. 3. Since there is a gap between two 
dispersion points, we have two wave numbers of slightly 
different values, which cause interference fringes known 
as the Pendellfsung beat. When sH = yr the diffracted 
intensity is zero at W = 0. 

3.2. In the case when q = 1 

When q - - 1  (no real part of the polarizability), 
b = 2 1 / 2  , p = 0  and the right-hand side of (12) is 
negative. Since the value of Y in (17) is complex in 
general, we take 

Y = Y' 4- iZ', (24) 

where Y' and Z' are both real. By substituting (15) and 
(24) into (12), we have 

(Y' cos 0) 2 - (X sin 0) 2 - (Z' cos 0 - K0i) 2 

3 i = - r o r l X h l 2 / 4  
(25) 
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Fig. 2. The dispersion surfaces in the symmetric Laue case. The 

abscissa is the - W  axis. The solid and dashed curves are the real and 
imaginary parts of  the curves, d = 0 .  (a) q = 0 ;  (b) q = l ,  
go = -1 .1 ;  (c) q = 0.5, go = - 1 .  The dotted curve in (b) shows 
the imaginary part for q = 1, go = - 1 .  

and 

Y' cos O(Z' cos 0 - K0i ) = 0. (26) 

When Y' cos 0 -- 0, we have from (25) 

(X sin0) 2 + (Z' cos0 - roi) 2 = ~orlXihl2/4. (27) 

On the other hand, when .Z' cos 0 - c0i -- 0, we have 

(X sin0) 2 - (Y' cos0) 2 = rflorlXihl2/4. (28) 

The dispersion surfaces obtained from (27) and (28) are 
shown in Fig. 4. Equation (28) expresses a hyperbola in 
the plane Z' = K0i/cos 0. The value of Z' = roi / cos 0 
corresponds to the mean absorption because 2rrZ'H is 
rewritten as - l z H / ( 2  cos 0) in this case. If the right-hand 
side of (28) has the same value as that of (23), the two 
equations are conjugate. The dispersion surface of (28) is 
obtained by rotating that of (23) 90 ° clockwise. 

Equation (27) expresses an ellipse in the plane of 
Y - - 0  with one axis along X = 0 and the other along 
Z ' =  ~Coi/COS0. The dispersion points in the complex 
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Fig. 3. The rocking curves in the symmetric Laue case for d - - 0 ,  
sH=rr .  (a) q = 0 ;  (b) q = l ,  g 0 = - l . l ;  (c) q = l ,  g 0 = - l ;  
(d) q = 0.5, go = - 1 .  
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plane are determined as intersecting points of the ellipse 
with v' in the X Z '  plane that corresponds to the surface 
normal axis v. The form of the dispersion surface is quite 
similar to that in the Bragg case when the imaginary part 
of the polarizability is zero, which will be shown in the 
next section. The value of IZ'I is minimum at W -- 0 for 
the branch closer to Z' = 0 and is maximum at W -- 0 
for the branch further from Z ' - - 0 .  When X is large 
enough, the two dispersion points are on the hyper- 
bola on the right-hand side of Fig. 4. With decreasing X, 
the dispersion points are degenerate at a point 
X =Xor lX ia l / (2 s inO) ,  then leave the hyperbola. They 
are on the ellipse until they become degenerate at a point 
X - --KOrlXihl/(2 sin 0), where they leave the ellipse and 
move to the other side of the hyperbola. 

Fig. 2(b) shows the dispersion surface similar to Fig. 4 
in a different way as a function of W. The ordinate is the 
Z' axis as well as the Y' axis. The solid curves are the 
hyperbola as in Fig. 4 and the dashed curves are the 
curves in the Y ' =  0 plane in Fig. 4. The two dashed 
straight lines in Fig. 2(b) give the mean absorption. We 
have assumed go = -1 .1 .  The rocking curve in this case 
is shown in Fig. 3(b). At W = 0, the intensity becomes 
maximum due to abnormal transmission because IZ'l is a 
minimum. When IWl > 1, Z'--Koi/COSO and Y':/: 0, 
the P e n d e l l 6 s u n g  beat is observed as a result of the 
interference between two branches of waves. Since Ig01 is 
large (go = -1 .1) ,  the intensity becomes extremely small 
for a thick crystal. 

The imaginary part of the dispersion surface for 
go = - 1  is shown by the dotted line in Fig. 2(b). The real 
part is not shown because it is quite similar to that in Fig. 
2(b). At W = 0, the dotted ellipse is tangential to the 
Z' = 0 line. The wave corresponding to this point does 
not show any absorption. This explains the abnormal 
transmission of 25% for both the transmitted and the 
diffracted intensities regardless of the thickness of the 
crystal, which is discussed by FK. The rocking curve in 
this case is shown in Fig. 3(c). It is noted that the 
intensity at W = 0 in (c) is higher than in (b). 

3.3. In the case  w h e n  q = 0.5 

Fig. 2(c) shows the dispersion surface when q = 0.5 
and go -- - 1.0. The solid curves show the real part of the 

~y' 

\ i  ...... I v 
. . . . . .  t : z  . . . . .  

I J 
Fig. 4. The dispersion surface in the symmetric Laue case for q = 1. 

The conditions are the same as in Fig. 2(b). 

dispersion surface and the dashed curves show the 
imaginary part. The real and imaginary parts of branches 
1 and 2 are denoted by the numbers. The real part (the 
solid curves) is quite similar to the dispersion surface in 
Fig. 2(a). For any W, there are two branch points of 
different imaginary parts (the dashed curves): one is 
always larger than the other. This results in different 
amplitudes of waves for branches 1 and 2 and the 
diffracted intensity in Fig. 3(d) does not become zero due 
to the interference. Since the imaginary part of branch 2 
is tangential to the line Z ' =  0 at W -  0, both the 
transmitted and diffracted intensities become 25% of the 
incident intensity for a thick crystal owing to the 
abnormal transmission effect. The wave of branch 1, 
on the other hand, suffers abnormal absorption at W - 0, 
twice as large as the normal absorption. 

4. Symmetric Bragg case 

In the symmetric Bragg case, /3 = 0 and 
0 = re~2 - Oi - 02 - zr/2. The basic equation of the 
dispersion surface is written using (12) and (15), 

(Y sin 0) 2 - (X cos 0 - iK0i) 2 
2 - 2  b 2 = --KOrXh (1 -- + 2ip COS 3)/4. (29) 

If we put Y = Y' + iZ'  (Y', Z' real), we have 

(Y' sin 0) 2 - (Z' sin 0) 2 - (X cos O) 2 

_ _  _ _  K 2 i  2 - 2  - -  K O r X h ( 1  - -  b2)/4 (30) 

and 

2 Y ' Z '  sin 2 0 2KoiX cos 0 2 -2 = -- KOrXhPCOSS/2.  (31) 

4.1.  In the case  w h e n  q - -  0 

When q = 0, parameters b and p are both zero. From 
(31), either Y ' = 0  or Z ' = 0 .  The equation of the 
dispersion surface for Z' = 0 is written as 

(X cos0) 2 - (Y' sin0) 2 = rgrlxrhl2/4; (32) 

for Y' = 0, it is written as 

(X cos0) 2 + (Z' sin0) 2 = ~rlxrhl2/4 .  (33) 

The dispersion surfaces obtained from (32) and (33) are 
shown in Fig. 5(a) as a function of W in the same manner 
as in Fig. 2. The dispersion points are on the hyperbola 
(the solid curves) when I Wl > 1 and on the ellipse (the 
dashed curve) when IWl < 1. At IWl = 1, the dispersion 
points are degenerate. The rocking curve of the diffracted 
beam from a semi-infinite crystal is of a top hat form as 
shown in Fig. 6(a). It is noted that (32) is similar to (28) 
in the Laue case and (33) is similar to (27). The 
dispersion surface, without the imaginary part of 
polarizability in the symmetric Bragg case, is rotated 
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90 ° from that in the symmetric Laue case, i.e./3 = 0 in 
the Bragg case and /3 = zr/2 in the Laue case. The 
dispersion surface, without real-part polarizability in the 
Laue case, is also rotated 90 ° from that without the 
imaginary part, as shown in Figs. 2(a) and (b). The 
dispersion surface in Fig. 5(a) is quite similar to that in 
Fig. 2(b). The upper half of the dashed curve gives rise to 
the enhancement of the wave into the crystal, which is 
not a realistic branch for a semi-infinite crystal. 

4.2. In the case  w h e n  q = 1 

When q = 1, (30) becomes 

(Y' sin 0) 2 - (Z' sin 0) 2 - (X cos 0) 2 
(34) 

= x 2 r l X ~ , 1 2 ( l  -- g2) /4  

and (31) becomes 

Y ' Z '  sin2 0 = xorlXihlg X COS 0/2. (35) 

The resonance error W is written using X as 

W --  -23(COSO/(rorlXihl). (36) 

When W = 0, Y' or Z' must be zero according to (35). As 
examples, the dispersion surfaces for go = - 1 . 2  and 
go = - 1  are shown in Figs. 5(b) and (c), respectively. 
For go -- -1 .2 ,  Y' is zero but Z' is not zero at W = 0 
(X = 0). For go = - 1, both Y' and Z' are zero at W = 0. 

The rocking curves from a semi-infinite crystal 
corresponding to these dispersion surfaces are shown in 
Figs. 6(b) and (c). The curve (c) shows a sharp peak with 
the maximum intensity of 1 at W -  O, which corre- 
sponds to the point where Y' and Z' are both zero. Since 
there is no gap between the two hyperbolas (the solid 
curves) in (c), the curve does not have a top hat form and 
the width is quite small owing to rapid change of Z' 
around W = O. This sharp rocking curve has been 
pointed out by Kato (1992) and FK. 

4.3. In the cases  w h e n  q = 0.5 and 0.01 

For go = - 1  and q = 0.5, the dispersion surface is 
shown in Fig. 5(d) and the rocking curve in Fig. 6(d). At 
a certain value of W between - 1  and O, Y' and Z' both 
become zero, where the diffracted intensity shows 
maximum as shown in Fig. 6(d). The dispersion surface 
in Fig. 5(d) is not symmetric with respect to the line of 
W = 0, and the corresponding rocking curve [Fig. 6(d)] 
is not symmetric either. 

For go = - 1  and q = 0.01, the dispersion surface is 
shown in Fig. 5(e) and the rocking curve in Fig. 6(e). At 
first sight, the curve looks quite different from that in Fig. 
6(a), but it is noted that curve (e) becomes curve (a) in 
the limit of q ~ 0 (g ~ 0). In this limit, the dispersion 
surface in (a) is interpreted as follows. Branch 1 (the 
upper half of the left-hand side) and branch 2' (the lower 
half of the right-hand side) are regarded as being realistic 
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Fig. 5. The dispersion surface in the symmetric 
Bragg case. The solid and dashed curves are 
the real and imaginary parts of the curves. 
8 = 0 .  (a) q=O;  (b) q = l ,  g o = - l . 2 ;  (c) 
q = l ,  g o = - l ;  (d) q=0 .5 ,  g o = - l ;  (e) 
q = 0.01, go = --1. 
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in the sense that the corresponding wave suffers 
absorption when it propagates into a semi-infinite crystal 
(Miyake, 1969). 1' and 2 branches are not realistic 
because the corresponding wave suffers intensity en- 
hancement in the crystal. The dashed curve 3 gives 
Z ' >  0 and is unrealistic, so that the realistic branch 
starting from curve 1 for W > 1 leaves the hyperbola at 
W = 1 and follows the curve 3'. It leaves curve 3' at 
W = - 1 and follows the curve 2'. In a similar manner, in 
Fig. 5(e), for the realistic branch, the real part is given by 
curve 1 for W > - 1  and by curve 2' for W < - 1 .  The 
imaginary part of the realistic branch always stays in the 
lower half of the dashed curve. If we compare the 
realistic branches in (a) and (e), they have a similar form. 
In Fig. 6(e), the diffracted intensity does not have a top- 
hat form and has the maximum near W - - 1  when 
Z ' - - 0 .  The total reflection occurs at one point near 
W = - I .  

5. Summary 

We have studied dispersion surfaces by changing the 
ratio between the real and imaginary parts of the X-ray 

t | i I 1.0 / i / "  

(a) / ~  

t /=AJI/> Ph (e//  (c) 

/ i i  
o.s /.// . 

I 
0 2 1 0 - 1  - 

W 

Fig. 6. The rocking curves in the symmetric Bragg case. The conditions 
for curves (a)-(e) correspond to those in Fig. 5. The details for curve 
(c') are given in the text. 

polarizability. It is shown that the dispersion surface in 
the symmetric Laue case for no real part of the 
polarizability ( q -  1) is quite different from the well 
known form of the dispersion surface when the 
imaginary-part polarizability is zero. It shows a similar 
form to that in the symmetric Bragg case for no 
imaginary part of the polarizability. The dispersion 
surface in the Laue case for q - - 1  becomes pure 
imaginary for - 1  < W < 1, which explains why the 
abnormal transmission and absorption effects result. 

In the symmetric Bragg case from a semi-infinite 
crystal, the dispersion surface for no real part of the 
polarizability has no gap between the two branches and 
the two branches are tangential to each other at W -- 0. 
This results in a very sharp rocking curve when the real- 
part polarizability is zero. The sharp rocking curve may 
be useful for a monochromator with small divergent 
angle. As an example, Fig. 6(c') shows the rocking curve 
after four times diffraction from such a channel-cut 
monochromator. The width of the rocking curve (c') is 
1/100 of the curve (a). 

As shown above, the complex dispersion surfaces for 
various values of q are quite useful to interpret not only 
the shapes of the rocking curves but also the abnormal 
transmission and absorption effects. It is also possible to 
obtain information on the phases of waves corresponding 
to each branch point by using the dispersion surface. A 
paper on this topic will be published in the near future. 
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Abstract 

In 1912, von Laue first described X-ray diffraction by 
approximating as plane waves the spherical waves 
radiated by atoms in a crystal. Darwin recognized that 
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this approximation is valid only in the limit of very small 
crystals, and published in 1914 the more general 
spherical-wave theory based on the reflectivity of 
individual atomic planes. The Darwin theory is extended 
here to surface Bragg diffraction from a single-crystalline 
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